Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
N Engl J Med ; 388(21): 1931-1941, 2023 May 25.
Article in English | MEDLINE | ID: covidwho-20241324

ABSTRACT

BACKGROUND: Whether the antiinflammatory and immunomodulatory effects of glucocorticoids may decrease mortality among patients with severe community-acquired pneumonia is unclear. METHODS: In this phase 3, multicenter, double-blind, randomized, controlled trial, we assigned adults who had been admitted to the intensive care unit (ICU) for severe community-acquired pneumonia to receive intravenous hydrocortisone (200 mg daily for either 4 or 7 days as determined by clinical improvement, followed by tapering for a total of 8 or 14 days) or to receive placebo. All the patients received standard therapy, including antibiotics and supportive care. The primary outcome was death at 28 days. RESULTS: A total of 800 patients had undergone randomization when the trial was stopped after the second planned interim analysis. Data from 795 patients were analyzed. By day 28, death had occurred in 25 of 400 patients (6.2%; 95% confidence interval [CI], 3.9 to 8.6) in the hydrocortisone group and in 47 of 395 patients (11.9%; 95% CI, 8.7 to 15.1) in the placebo group (absolute difference, -5.6 percentage points; 95% CI, -9.6 to -1.7; P = 0.006). Among the patients who were not undergoing mechanical ventilation at baseline, endotracheal intubation was performed in 40 of 222 (18.0%) in the hydrocortisone group and in 65 of 220 (29.5%) in the placebo group (hazard ratio, 0.59; 95% CI, 0.40 to 0.86). Among the patients who were not receiving vasopressors at baseline, such therapy was initiated by day 28 in 55 of 359 (15.3%) of the hydrocortisone group and in 86 of 344 (25.0%) in the placebo group (hazard ratio, 0.59; 95% CI, 0.43 to 0.82). The frequencies of hospital-acquired infections and gastrointestinal bleeding were similar in the two groups; patients in the hydrocortisone group received higher daily doses of insulin during the first week of treatment. CONCLUSIONS: Among patients with severe community-acquired pneumonia being treated in the ICU, those who received hydrocortisone had a lower risk of death by day 28 than those who received placebo. (Funded by the French Ministry of Health; CAPE COD ClinicalTrials.gov number, NCT02517489.).


Subject(s)
Anti-Inflammatory Agents , Community-Acquired Infections , Hydrocortisone , Pneumonia , Adult , Humans , Anti-Inflammatory Agents/adverse effects , Anti-Inflammatory Agents/therapeutic use , Community-Acquired Infections/drug therapy , Community-Acquired Infections/mortality , Double-Blind Method , Hydrocortisone/adverse effects , Hydrocortisone/therapeutic use , Pneumonia/drug therapy , Pneumonia/mortality , Respiration, Artificial , Treatment Outcome
2.
PLoS One ; 15(12): e0243762, 2020.
Article in English | MEDLINE | ID: covidwho-2279671

ABSTRACT

INTRODUCTION: Multiplex polymerase chain reaction (mPCR) for respiratory virus testing is increasingly used in community-acquired pneumonia (CAP), however data on one-year outcome in intensive care unit (ICU) patients with reference to the causative pathogen are scarce. MATERIALS AND METHODS: We performed a single-center retrospective study in 123 ICU patients who had undergone respiratory virus testing for CAP by mPCR and with known one-year survival status. Functional status including dyspnea (mMRC score), autonomy (ADL Katz score) and need for new home-care ventilatory support was assessed at a one-year post-ICU follow-up. Mortality rates and functional status were compared in patients with CAP of a bacterial, viral or unidentified etiology one year after ICU admission. RESULTS: The bacterial, viral and unidentified groups included 19 (15.4%), 37 (30.1%), and 67 (54.5%) patients, respectively. In multivariate analysis, one-year mortality in the bacterial group was higher compared to the viral group (HR 2.92, 95% CI 1.71-7.28, p = 0.02) and tended to be higher compared to the unidentified etiology group (p = 0.06); but no difference was found between the viral and the unidentified etiology group (p = 0.43). In 64/83 one-year survivors with a post-ICU follow-up consultation, there were no differences in mMRC score, ADL Katz score and new home-care ventilatory support between the groups (p = 0.52, p = 0.37, p = 0.24, respectively). Severe dyspnea (mMRC score = 4 or death), severe autonomy deficiencies (ADL Katz score ≤ 2 or death), and major adverse respiratory events (new home-care ventilatory support or death) were observed in 52/104 (50.0%), 47/104 (45.2%), and 65/104 (62.5%) patients, respectively; with no difference between the bacterial, viral and unidentified group: p = 0.58, p = 0.06, p = 0.61, respectively. CONCLUSIONS: CAP of bacterial origin had a poorer outcome than CAP of viral or unidentified origin. At one-year, impairment of functional status was frequently observed, with no difference according to the etiology.


Subject(s)
Community-Acquired Infections/pathology , Pneumonia, Bacterial/pathology , Pneumonia, Viral/pathology , Activities of Daily Living , Aged , Aged, 80 and over , Community-Acquired Infections/microbiology , Community-Acquired Infections/mortality , Community-Acquired Infections/virology , Dyspnea/etiology , Female , Functional Status , Hospitalization , Humans , Intensive Care Units , Kaplan-Meier Estimate , Male , Middle Aged , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/mortality , Pneumonia, Viral/mortality , Proportional Hazards Models , Respiration, Artificial , Retrospective Studies , Severity of Illness Index
3.
PLoS One ; 17(2): e0263215, 2022.
Article in English | MEDLINE | ID: covidwho-1704354

ABSTRACT

BACKGROUND: Whether high D-dimer level before treatment has any impact on poor outcomes in patients with community-associated pneumonia (CAP) remains unclear. Therefore, we conducted the first meta-analysis focusing specifically on prognostic value of high D-dimer level before treatment in CAP patients. METHODS: Pubmed, Embase, the Cochrane Central Register of Controlled Trials and World Health Organization clinical trials registry center were searched up to the end of March 2021. Randomized clinical trials (RCT) and observational studies were included to demonstrate the association between the level of D-dimer and clinical outcomes. Data were extracted using an adaptation of the Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies (CHARMS-PF). When feasible, meta-analysis using random-effects models was performed. Risk of bias and level of evidence were assessed with the Quality in Prognosis Studies tool and an adaptation of Grading of Recommendations Assessment, Development, and Evaluation. Data were analyzed using STATA 14.0 to complete meta and network analysis. MAIN OUTCOMES AND MEASURES: Besides d-dimer levels in CAP patients with poor outcomes, we also analyzed proportion of patients with or without poor outcomes correctly classified by the d-dimer levels as being at high or low risk. The poor outcome includes severe CAP, death, pulmonary embolism (PE) and invasive mechanical ventilators. RESULTS: 32 studies with a total of 9,593 patients were eventually included. Pooled effect size (ES) suggested that d-dimer level was significantly higher in severe CAP patients than non-severe CAP patients with great heterogeneity (SMD = 1.21 95%CI 0.87-1.56, I2 = 86.8% p = 0.000). D-dimer level was significantly elevated in non-survivors compared to survivors with CAP (SMD = 1.22 95%CI 0.67-1.77, I2 = 85.1% p = 0.000). Prognostic value of d-dimer for pulmonary embolism (PE) was proved by hierarchical summary receiver operating characteristic curve (HSROC) with good summary sensitivity (0.74, 95%CI, 0.50-0.89) and summary specificity (0.82, 95%CI, 0.41-0.97). Network meta-analysis suggested that there was a significant elevation of d-dimer levels in CAP patients with poor outcome than general CAP patients but d-dimer levels weren't significantly different among poor outcomes. CONCLUSION: The prognostic ability of d-dimer among patients with CAP appeared to be good at correctly identifying high-risk populations of poor outcomes, suggesting potential for clinical utility in patients with CAP.


Subject(s)
Community-Acquired Infections/blood , Community-Acquired Infections/mortality , Fibrin Fibrinogen Degradation Products/analysis , Network Meta-Analysis , Pneumonia/blood , Pneumonia/mortality , Severity of Illness Index , Adolescent , Adult , Aged , Aged, 80 and over , Child , Community-Acquired Infections/complications , Female , Humans , Male , Middle Aged , Pneumonia/complications , Prognosis , Pulmonary Embolism/etiology , Respiration, Artificial , Risk Factors , Young Adult
4.
Dis Markers ; 2022: 4713045, 2022.
Article in English | MEDLINE | ID: covidwho-1673529

ABSTRACT

PURPOSE: Histidine-rich glycoprotein (HRG) is abundant in serum and has been implicated in several processes including blood coagulation and immune response. This prospective study is aimed at exploring HRG as a biomarker in patients hospitalized for community-acquired pneumonia (CAP). METHODS: A total of 160 patients (73 severe CAP, 57 nonsevere CAP), and 30 healthy controls were enrolled in 2019. Demographic and clinical data were recorded for all patients. Serum HRG concentration was measured upon admission using ELISA. RESULTS: HRG levels were significantly lower in severe CAP patients compared with other groups, regardless of etiology, and were negatively correlated with serum interleukin-6 and disease severity index scores. Combination of CURB-65, PSI, and APACHE II scores with HRG values significantly improved the accuracy of predicting 30-day mortality in these patients. Cox regression analysis showed that HRG could serve as an independent risk factor for 30-day mortality. Notably, patients with HRG ≤ 16.92 µg/mL had significantly lower cumulative survival than those with HRG > 16.92 µg/mL. CONCLUSION: Serum HRG levels are lower in patients with severe CAP and are negatively correlated with disease severity scores. Measurement of HRG upon admission can provide valuable prognostic information for patients with CAP.


Subject(s)
Community-Acquired Infections/blood , Community-Acquired Infections/mortality , Pneumonia/blood , Pneumonia/mortality , Proteins/analysis , Adult , Aged , Female , Humans , Male , Middle Aged , Prognosis , Prospective Studies , Survival Rate
5.
Thromb Haemost ; 122(2): 257-266, 2022 02.
Article in English | MEDLINE | ID: covidwho-1592074

ABSTRACT

BACKGROUND: It is still unclear if patients with community-acquired pneumonia (CAP) and coronavirus disease 2019 (COVID-19) have different rate, typology, and impact of thrombosis on survival. METHODS: In this multicenter observational cohort study, 1,138 patients, hospitalized for CAP (n = 559) or COVID-19 (n = 579) from seven clinical centers in Italy, were included in the study. Consecutive adult patients (age ≥ 18 years) with confirmed COVID-19-related pneumonia, with or without mechanical ventilation, hospitalized from March 1, 2020 to April 30, 2020, were enrolled. COVID-19 was diagnosed based on the World Health Organization interim guidance. Patients were followed-up until discharge or in-hospital death, registering the occurrence of thrombotic events including ischemic/embolic events. RESULTS: During the in-hospital stay, 11.4% of CAP and 15.5% of COVID-19 patients experienced thrombotic events (p = 0.046). In CAP patients all the events were arterial thromboses, while in COVID-19 patients 8.3% were venous and 7.2% arterial thromboses.During the in-hospital follow-up, 3% of CAP patients and 17% of COVID-19 patients died (p < 0.001). The highest mortality rate was found among COVID-19 patients with thrombotic events (47.6 vs. 13.4% in thrombotic-event-free patients; p < 0.001). In CAP, 13.8% of patients experiencing thrombotic events died versus 1.8% of thrombotic event-free ones (p < 0.001). A multivariable Cox-regression analysis confirmed a higher risk of death in COVID-19 patients with thrombotic events (hazard ratio: 2.1; 95% confidence interval: 1.4-3.3; p < 0.001). CONCLUSION: Compared with CAP, COVID-19 is characterized by a higher burden of thrombotic events, different thrombosis typology and higher risk of thrombosis-related in-hospital mortality.


Subject(s)
COVID-19/epidemiology , Community-Acquired Infections/epidemiology , Pneumonia/epidemiology , SARS-CoV-2/physiology , Thrombosis/epidemiology , Aged , COVID-19/mortality , Cohort Studies , Community-Acquired Infections/mortality , Female , Hospitalization , Humans , Italy/epidemiology , Male , Middle Aged , Pneumonia/mortality , Risk Factors , Survival Analysis , Thrombosis/mortality
6.
PLoS One ; 16(11): e0257619, 2021.
Article in English | MEDLINE | ID: covidwho-1502062

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is associated with poor outcomes in COVID patients. Differences between hospital-acquired (HA-AKI) and community-acquired AKI (CA-AKI) are not well established. METHODS: Prospective, observational cohort study. We included 877 patients hospitalized with COVID diagnosis at two third-level hospitals in Mexico. Primary outcome was all-cause mortality at 28 days compared between COVID patients with CA-AKI and HA-AKI. Secondary outcomes included the need for KRT, and risk factors associated with the development of CA-AKI and HA-AKI. RESULTS: A total of 377 patients (33.7%) developed AKI. CA-AKI occurred in 202 patients (59.9%) and HA-AKI occurred in 135 (40.1%). Patients with CA-AKI had more significant comorbidities, including diabetes (52.4% vs 38.5%), hypertension (58.4% vs 39.2%), CKD (30.1% vs 14.8%), and COPD (5.9% vs 1.4%), than those with HA-AKI. Patients' survival without AKI was 87.1%, with CA-AKI it was 75.4%, and with HA-AKI it was 69.6%, log-rank test p < 0.001. Only age > 60 years (OR 1.12, 95% CI 1.06-1.18, p <0.001), COVID severity (OR 1.09, 95% CI 1.03-1.16, p = 0.002), the need in mechanical lung ventilation (OR 1.67, 95% CI 1.56-1.78, p <0.001), and HA-AKI stage 3 (OR 1.16, 95% CI 1.05-1.29, p = 0.003) had a significant increase in mortality. The presence of CKD (OR 1.48, 95% CI 1.391.56, p < 0.001), serum lymphocytes < 1000 µL (OR 1.03, 95% CI 1.00-1.07, p = 0.03), the need in mechanical lung ventilation (OR 1.06, 95% CI 1.02-1.11, p = 0.003), and CA-AKI stage 3 (OR 1.37, 95% CI 1.29-1.46, p < 0.001) were the only variables associated with a KRT start. CONCLUSIONS: We found that COVID patients who are complicated by CA-AKI have more comorbidities and worse biochemical parameters at the time of hospitalization than HA-AKI patients, but despite these differences, their probability of dying is similar.


Subject(s)
Acute Kidney Injury/mortality , COVID-19/mortality , Community-Acquired Infections/mortality , Iatrogenic Disease/epidemiology , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Acute Kidney Injury/virology , COVID-19/complications , COVID-19/pathology , COVID-19/virology , Female , Hospital Mortality , Hospitalization , Humans , Male , Mexico/epidemiology , Middle Aged , Respiration, Artificial , Risk Factors , SARS-CoV-2/pathogenicity
7.
MMWR Morb Mortal Wkly Rep ; 69(49): 1860-1867, 2020 Dec 11.
Article in English | MEDLINE | ID: covidwho-1389860

ABSTRACT

In the 10 months since the first confirmed case of coronavirus disease 2019 (COVID-19) was reported in the United States on January 20, 2020 (1), approximately 13.8 million cases and 272,525 deaths have been reported in the United States. On October 30, the number of new cases reported in the United States in a single day exceeded 100,000 for the first time, and by December 2 had reached a daily high of 196,227.* With colder weather, more time spent indoors, the ongoing U.S. holiday season, and silent spread of disease, with approximately 50% of transmission from asymptomatic persons (2), the United States has entered a phase of high-level transmission where a multipronged approach to implementing all evidence-based public health strategies at both the individual and community levels is essential. This summary guidance highlights critical evidence-based CDC recommendations and sustainable strategies to reduce COVID-19 transmission. These strategies include 1) universal face mask use, 2) maintaining physical distance from other persons and limiting in-person contacts, 3) avoiding nonessential indoor spaces and crowded outdoor spaces, 4) increasing testing to rapidly identify and isolate infected persons, 5) promptly identifying, quarantining, and testing close contacts of persons with known COVID-19, 6) safeguarding persons most at risk for severe illness or death from infection with SARS-CoV-2, the virus that causes COVID-19, 7) protecting essential workers with provision of adequate personal protective equipment and safe work practices, 8) postponing travel, 9) increasing room air ventilation and enhancing hand hygiene and environmental disinfection, and 10) achieving widespread availability and high community coverage with effective COVID-19 vaccines. In combination, these strategies can reduce SARS-CoV-2 transmission, long-term sequelae or disability, and death, and mitigate the pandemic's economic impact. Consistent implementation of these strategies improves health equity, preserves health care capacity, maintains the function of essential businesses, and supports the availability of in-person instruction for kindergarten through grade 12 schools and preschool. Individual persons, households, and communities should take these actions now to reduce SARS-CoV-2 transmission from its current high level. These actions will provide a bridge to a future with wide availability and high community coverage of effective vaccines, when safe return to more everyday activities in a range of settings will be possible.


Subject(s)
COVID-19/prevention & control , Guidelines as Topic , Public Health Practice , COVID-19/mortality , COVID-19/transmission , Community-Acquired Infections/mortality , Community-Acquired Infections/prevention & control , Community-Acquired Infections/transmission , Humans , United States/epidemiology
8.
MMWR Morb Mortal Wkly Rep ; 69(15): 446-450, 2020 Apr 17.
Article in English | MEDLINE | ID: covidwho-1389842

ABSTRACT

SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), has spread rapidly around the world since it was first recognized in late 2019. Most early reports of person-to-person SARS-CoV-2 transmission have been among household contacts, where the secondary attack rate has been estimated to exceed 10% (1), in health care facilities (2), and in congregate settings (3). However, widespread community transmission, as is currently being observed in the United States, requires more expansive transmission events between nonhousehold contacts. In February and March 2020, the Chicago Department of Public Health (CDPH) investigated a large, multifamily cluster of COVID-19. Patients with confirmed COVID-19 and their close contacts were interviewed to better understand nonhousehold, community transmission of SARS-CoV-2. This report describes the cluster of 16 cases of confirmed or probable COVID-19, including three deaths, likely resulting from transmission of SARS-CoV-2 at two family gatherings (a funeral and a birthday party). These data support current CDC social distancing recommendations intended to reduce SARS-CoV-2 transmission. U.S residents should follow stay-at-home orders when required by state or local authorities.


Subject(s)
Betacoronavirus/isolation & purification , Community-Acquired Infections/transmission , Coronavirus Infections/diagnosis , Coronavirus Infections/transmission , Pneumonia, Viral/diagnosis , Pneumonia, Viral/transmission , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , Chicago/epidemiology , Child , Child, Preschool , Cluster Analysis , Community-Acquired Infections/epidemiology , Community-Acquired Infections/mortality , Coronavirus Infections/epidemiology , Coronavirus Infections/mortality , Family , Humans , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/mortality , SARS-CoV-2 , Young Adult
9.
PLoS One ; 16(6): e0253118, 2021.
Article in English | MEDLINE | ID: covidwho-1270950

ABSTRACT

BACKGROUND: Little information on the current burden of community-acquired pneumonia (CAP) in adults in Germany is available. METHODS: We conducted a retrospective cohort study using a representative healthcare claims database of approx. 4 million adults to estimate the incidence rates (IR) and associated mortality of CAP in 2015. IR and mortality were stratified by treatment setting, age group, and risk group status. A pneumonia coded in the primary diagnosis position or in the second diagnosis position with another pneumonia-related condition coded in the primary position was used as the base cases definition for the study. Sensitivity analyses using broader and more restrictive case definitions were also performed. RESULTS: The overall IR of CAP in adults ≥18 years was 1,054 cases per 100,000 person-years of observation. In adults aged 16 to 59 years, IR for overall CAP, hospitalized CAP and outpatient CAP was 551, 96 and 466 (with a hospitalization rate of 17%). In adults aged ≥60 years, the respective IR were 2,032, 1,061 and 1,053 (with a hospitalization rate of 52%). If any pneumonia coded in the primary or secondary diagnosis position was considered for hospitalized patients, the IR increased 1.5-fold to 1,560 in the elderly ≥60 years. The incidence of CAP hospitalizations was substantially higher in adults ≥18 years with at-risk conditions and high-risk conditions (IR of 608 and 1,552, respectively), compared to adults without underlying risk conditions (IR 108). High mortality of hospitalized CAP in adults ≥18 was observed in-hospital (18.5%), at 30 days (22.9%) and at one-year (44.5%) after CAP onset. Mortality was more than double in older adults in comparison to younger patients. CONCLUSION: CAP burden in older adults and individuals with underlying risk conditions was high. Maximizing uptake of existing vaccines for respiratory diseases may help to mitigate the disease burden, especially in times of strained healthcare resources.


Subject(s)
Community-Acquired Infections/epidemiology , Pneumonia/epidemiology , Adolescent , Adult , Age Factors , Aged , Community-Acquired Infections/mortality , Electronic Health Records , Female , Germany/epidemiology , Humans , Incidence , Male , Middle Aged , Mortality , Pneumonia/mortality , Retrospective Studies , Young Adult
10.
J Microbiol Immunol Infect ; 54(2): 253-260, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1203183

ABSTRACT

BACKGROUND/PURPOSE: Transplant recipients are vulnerable to life-threatening community-acquired respiratory viruses (CA-RVs) infection (CA-RVI). Even if non-transplant critically ill patients in intensive care unit (ICU) have serious CA-RVI, comparison between these groups remains unclear. We aimed to evaluate clinical characteristics and mortality of CA-RVI except seasonal influenza A/B in transplant recipients and non-transplant critically ill patients in ICU. METHODS: We collected 37,777 CA-RVs multiplex real-time reverse transcription-polymerase chain reaction test results of individuals aged ≥18 years from November 2012 to November 2017. The CA-RVs tests included adenovirus, coronavirus 229E/NL63/OC43, human bocavirus, human metapneumovirus, parainfluenza virus 1/2/3, rhinovirus, and respiratory syncytial virus A/B. RESULTS: We found 286 CA-RVI cases, including 85 solid organ transplantation recipients (G1), 61 hematopoietic stem cell transplantation recipients (G2), and 140 non-transplant critically ill patients in ICU (G3), excluding those with repeated isolation within 30 days. Adenovirus positive rate and infection cases were most prominent in G2 (p < 0.001). The median time interval between transplantation and CA-RVI was 30 and 20 months in G1 and G2, respectively. All-cause in-hospital mortality was significantly higher in G3 than in G1 or G2 (51.4% vs. 28.2% or 39.3%, p = 0.002, respectively). The mechanical ventilation (MV) was the independent risk factor associated with all-cause in-hospital mortality in all three groups (hazard ratio, 3.37, 95% confidence interval, 2.04-5.56, p < 0.001). CONCLUSIONS: This study highlights the importance of CA-RVs diagnosis in transplant recipients even in long-term posttransplant period, and in non-transplant critically ill patients in ICU with MV.


Subject(s)
Community-Acquired Infections/etiology , Respiratory Tract Infections/etiology , Transplant Recipients , Adult , Aged , Cohort Studies , Community-Acquired Infections/mortality , Community-Acquired Infections/virology , Critical Illness , Disease Susceptibility , Female , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Immunocompromised Host , Immunosuppression Therapy/adverse effects , Male , Middle Aged , Organ Transplantation/adverse effects , Republic of Korea/epidemiology , Respiratory Tract Infections/mortality , Respiratory Tract Infections/virology , Retrospective Studies , Risk Factors
11.
Respir Med ; 178: 106314, 2021 03.
Article in English | MEDLINE | ID: covidwho-1051931

ABSTRACT

BACKGROUND AND OBJECTIVES: Reports comparing the characteristics of patients and their clinical outcomes between community-acquired (CA) and hospital-acquired (HA) COVID-19 have not yet been reported in the literature. We aimed to characterise and compare clinical, biochemical and haematological features, in addition to clinical outcomes, between these patients. METHODS: This multi-centre, retrospective, observational study enrolled 488 SARS-CoV-2 positive patients - 339 with CA infection and 149 with HA infection. All patients were admitted to a hospital within the University Hospitals of Morecambe Bay NHS Foundation Trust between March 7th and May 18th, 2020. RESULTS: The CA cohort comprised of a significantly younger population, median age 75 years, versus 80 years in the HA cohort (P = 0·0002). Significantly less patients in the HA group experienced fever (P = 0·03) and breathlessness (P < 0·0001). Furthermore, significantly more patients had anaemia and hypoalbuminaemia in the HA group, compared to the CA group (P < 0·0001 for both). Hypertension and a lower median BMI were also significantly more pronounced in the HA cohort (P = 0·03 and P = 0·0001, respectively). The mortality rate was not significantly different between the two cohorts (34% in the CA group and 32% in the HA group, P = 0·64). However, the CA group required significantly greater ICU care (10% versus 3% in the HA group, P = 0·009). CONCLUSION: Hospital-acquired and community-acquired COVID-19 display similar rates of mortality despite significant differences in baseline characteristics of the respective patient populations. Delineation of community- and hospital-acquired COVID-19 in future studies on COVID-19 may allow for more accurate interpretation of results.


Subject(s)
COVID-19/complications , COVID-19/mortality , Community-Acquired Infections/complications , Community-Acquired Infections/mortality , Cross Infection/complications , Cross Infection/mortality , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , Community-Acquired Infections/diagnosis , Cross Infection/diagnosis , Female , Hospital Mortality , Hospitalization , Humans , Male , Middle Aged , Retrospective Studies , Survival Rate , Symptom Assessment , United Kingdom , Young Adult
12.
J Hosp Infect ; 107: 91-94, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1036511

ABSTRACT

This study aimed to determine whether nosocomial coronavirus disease 2019 (COVID-19) has a worse outcome compared with community-acquired COVID-19. This was a prospective cohort study of all hospitalized patients with confirmed COVID-19 in three acute hospitals on 9th April 2020. Patients were followed-up for at least 30 days. Nosocomial infection was defined as a positive swab after 7 days of admission. In total, one hundred and seventy-three patients were identified, and 19 (11.0%) had nosocomial infection. Thirty-two (18.5%) patients died within 30 days (all cause) of a positive swab test; there were no significant differences in 30-day all-cause mortality rates between the three groups (i.e. patients admitted with suspected COVID-19, patients with incidental COVID-19 and patients with nosocomial COVID-19): 21.1% vs 17.6% vs 21.6% (P=0.755). Nosocomial COVID-19 is not associated with increased mortality compared with community-acquired COVID-19.


Subject(s)
COVID-19/mortality , COVID-19/transmission , Community-Acquired Infections/mortality , Cross Infection/complications , Cross Infection/mortality , Aged , Aged, 80 and over , Community-Acquired Infections/virology , Comorbidity , Cross Infection/virology , Female , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , Prospective Studies , Risk Factors , Socioeconomic Factors , United Kingdom
13.
Curr Med Res Opin ; 36(11): 1747-1752, 2020 11.
Article in English | MEDLINE | ID: covidwho-799955

ABSTRACT

OBJECTIVE: Coronavirus disease 2019 (COVID-19) has high morbidity and mortality, and spreads rapidly in the community to result in a large number of infection cases. This study aimed to compare clinical features in adult patients with coronavirus disease 2019 (COVID-19) pneumonia to those in adult patients with community-acquired pneumonia (CAP). METHODS: Clinical presentations, laboratory findings, imaging features, complications, treatment and outcomes were compared between patients with COVID-19 pneumonia and patients with CAP. The study group of patients with COVID-19 pneumonia consisted of 120 patients. One hundred and thirty-four patients with CAP were enrolled for comparison. RESULTS: Patients with COVID-19 pneumonia had lower levels of abnormal laboratory parameters (white blood cell count, lymphocyte count, procalcitonin level, erythrocyte sedimentation rate and C-reactive protein level) and more extensive radiographic involvement. More severe respiratory compromise resulted in a higher rate of intensive care unit admission, acute respiratory distress syndrome (ARDS) and mechanical ventilation (36% vs 15%, 34% vs 15% and 32% vs 12%, respectively; all p < .05). The 30 day mortality was more than twice as high in patients with COVID-19 pneumonia (12% versus 5%; p = .063), despite not reaching a statistically significant difference. CONCLUSIONS: Lower levels of abnormal laboratory parameters, more extensive radiographic involvement, more severe respiratory compromise, and higher rates of ICU admission, ARDS and mechanical ventilation are key characteristics that distinguish patients with COVID-19-associated pneumonia from patients with CAP.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Adult , Aged , COVID-19 , Case-Control Studies , China/epidemiology , Community-Acquired Infections/complications , Community-Acquired Infections/diagnosis , Community-Acquired Infections/mortality , Community-Acquired Infections/therapy , Coronavirus Infections/complications , Coronavirus Infections/mortality , Coronavirus Infections/therapy , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/mortality , Pneumonia, Viral/therapy , Prognosis , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index
14.
Pharmacol Ther ; 217: 107663, 2021 01.
Article in English | MEDLINE | ID: covidwho-713921

ABSTRACT

While the world is grappling with the consequences of a global pandemic related to SARS-CoV-2 causing severe pneumonia, available evidence points to bacterial infection with Streptococcus pneumoniae as the most common cause of severe community acquired pneumonia (SCAP). Rapid diagnostics and molecular testing have improved the identification of co-existent pathogens. However, mortality in patients admitted to ICU remains staggeringly high. The American Thoracic Society and Infectious Diseases Society of America have updated CAP guidelines to help streamline disease management. The common theme is use of timely, appropriate and adequate antibiotic coverage to decrease mortality and avoid drug resistance. Novel antibiotics have been studied for CAP and extend the choice of therapy, particularly for those who are intolerant of, or not responding to standard treatment, including those who harbor drug resistant pathogens. In this review, we focus on the risk factors, microbiology, site of care decisions and treatment of patients with SCAP.


Subject(s)
Community-Acquired Infections/drug therapy , Community-Acquired Infections/microbiology , Disease Management , Intensive Care Units , Pneumonia/drug therapy , Pneumonia/microbiology , Community-Acquired Infections/mortality , Drug Resistance, Multiple, Bacterial , Guidelines as Topic , Humans , Pneumonia/mortality
16.
Front Cell Infect Microbiol ; 10: 322, 2020.
Article in English | MEDLINE | ID: covidwho-623310

ABSTRACT

Background: Corona virus disease (COVID-19) is an infectious respiratory disease that has spread rapidly across the world. Many studies have already evaluated the clinical features of COVID-19, but how it compares with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-negative community-acquired pneumonia (SN-CAP) is still unclear. Moreover, COVID-19 mortality is correlated with disease severity, but indicators for severity grading have not been specified. We aimed to analyze the clinical characteristics of COVID-19 in comparison with SN-CAP and find indicators for disease severity in COVID-19. Methods: Patients diagnosed with COVID-19 and SN-CAP were enrolled. Clinical, radiological, and laboratory data were analyzed. Results: The numbers of COVID-19 and SN-CAP patients enrolled were 304 and 138, respectively. The age of the patients was not significantly different between the groups. Compared with SN-CAP, COVID-19 patients had more symptoms of fever and dyspnea; and showed significant difference in blood count results. Computed tomography (CT) imaging of COVID-19 patients showed patchy ground-glass opacities that correlated with disease severity, whereas the CT imaging of SN-CAP patients showed patchy high-density shadows. COVID-19 patients were classified into moderate, severe, and critically severe groups. The severe and critically severe groups had elevated levels of white blood cells (WBC), neutrophils, platelets, C-reaction protein (CRP), lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), troponin-I, creatinine, and blood urea nitrogen (BUN). However, they had decreased levels of lymphocytes, lymphocyte ratio, and albumin. Compared with the younger patients, the older COVID-19 individuals had more chronic diseases and significantly elevated levels of WBC, neutrophil, and CRP levels. Conclusion: SN-CAP showed more inflammatory reaction than COVID-19. Old people with chronic diseases are more susceptible to COVID-19 and have a high likelihood of developing severe and critically severe infection. Levels of WBC, lymphocytes, neutrophils, CRP, NLR, PLR, troponin-I, creatinine, and BUN are important indicators for severity grading in COVID-19.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus Infections/pathology , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/pathology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/pathology , Adolescent , Adult , Age Factors , Betacoronavirus , Blood Chemical Analysis , C-Reactive Protein/analysis , COVID-19 , Community-Acquired Infections/mortality , Community-Acquired Infections/pathology , Comorbidity , Coronavirus Infections/mortality , Female , Humans , Inflammation/pathology , Leukocyte Count , Male , Middle Aged , Neutrophils/cytology , Pandemics , Platelet Count , Pneumonia, Bacterial/mortality , Pneumonia, Viral/mortality , Retrospective Studies , SARS-CoV-2 , Young Adult
17.
J Clin Pathol ; 73(12): 840-844, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-623167

ABSTRACT

Here, we report the pathological findings of nine complete autopsies of individuals who died in community settings in the UK, three of which were positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), three tested negative for SARS-CoV-2 but are likely false negatives, and three died of other respiratory infections. Autopsy revealed firm, consolidated lungs or lobar pneumonia. Histology of the lungs showed changes of diffuse alveolar damage with fibrin membrane formation, thickened alveolar walls and interstitium with lymphocytic infiltrate, and type 2 pneumocyte hyperplasia with shedding into the alveolar space. This series is the first in the world to describe autopsy findings in individuals dying suddenly in the community, not previously known to have COVID-19 infection, and the first autopsy series in the UK. During a time when testing in the UK is currently primarily offered to patients in hospital or symptomatic key workers, with limited testing available in community settings, it highlights the importance of testing for COVID-19 at autopsy. Two deaths occurred in care homes where a diagnosis of COVID-19 allowed the health protection team to provide support in that 'closed setting' to reduce the risks of onward transmission. This work highlights the need for frequent COVID-19 testing in the management of patients in community settings. Comprehensive virology and microbiology assessment is pivotal to correctly identify the cause of death, including those due to COVID-19 infection, and to derive accurate death statistics.


Subject(s)
Autopsy , COVID-19 Testing , COVID-19/pathology , Lung/pathology , Myocardium/pathology , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/mortality , Cause of Death , Community-Acquired Infections/diagnosis , Community-Acquired Infections/mortality , Community-Acquired Infections/pathology , False Positive Reactions , Female , Humans , Male , SARS-CoV-2/isolation & purification , United Kingdom/epidemiology
18.
J Clin Virol ; 128: 104436, 2020 07.
Article in English | MEDLINE | ID: covidwho-305912

ABSTRACT

AIMS: During the ongoing COVID-19 outbreak, co-circulation of other common respiratory viruses can potentially result in co-infections; however, reported rates of co-infections for SARS-CoV-2 vary. We sought to evaluate the prevalence and etiology of all community acquired viral respiratory infections requiring hospitalization during an ongoing COVID-19 outbreak, with a focus on co-infection rates and clinical outcomes. METHODS: Over a 10-week period, all admissions to our institution, the largest tertiary hospital in Singapore, were screened for respiratory symptoms, and COVID-19 as well as a panel of common respiratory viral pathogens were systematically tested for. Information was collated on clinical outcomes, including requirement for mechanical ventilation and in hospital mortality. RESULTS: One-fifth (19.3%, 736/3807) of hospitalized inpatients with respiratory symptoms had a PCR-proven viral respiratory infection; of which 58.5% (431/736) tested positive for SARS-CoV-2 and 42.2% (311/736) tested positive for other common respiratory viruses. The rate of co-infection with SARS-CoV-2 was 1.4% (6/431); all patients with co-infection had mild disease and stayed in communal settings. The in-hospital mortality rate and proportion of COVID-19 patients requiring invasive ventilation was low, at around 1% of patients; these rates were lower than patients with other community-acquired respiratory viruses admitted over the same period (p < 0.01). CONCLUSION: Even amidst an ongoing COVID-19 outbreak, common respiratory viruses still accounted for a substantial proportion of hospitalizations. Coinfections with SARS-CoV-2 were rare, with no observed increase in morbidity or mortality.


Subject(s)
Betacoronavirus/isolation & purification , Coinfection/epidemiology , Community-Acquired Infections/epidemiology , Coronavirus Infections/epidemiology , Disease Outbreaks , Pneumonia, Viral/epidemiology , Respiratory Tract Infections/epidemiology , Virus Diseases/epidemiology , Adult , Betacoronavirus/genetics , COVID-19 , Coinfection/mortality , Coinfection/virology , Community-Acquired Infections/mortality , Community-Acquired Infections/virology , Coronavirus Infections/mortality , Coronavirus Infections/virology , Hospitalization , Humans , Inpatients , Male , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Respiratory Tract Infections/mortality , Respiratory Tract Infections/virology , SARS-CoV-2 , Singapore/epidemiology , Tertiary Care Centers , Virus Diseases/mortality , Virus Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL